Outline

Morning program
 Preliminaries
 Text matching I
 Text matching II

Afternoon program
 Learning to rank
 Modeling user behavior
 Generating responses
 Wrap up
Outline

Morning program
 Preliminaries
 Text matching I
 Text matching II

Afternoon program
 Learning to rank
 Overview & basics
 Refresher of cross-entropy
 Pointwise loss
 Pairwise loss
 Listwise loss
 Different levels of supervision
 Toolkits
 Modeling user behavior
 Generating responses
 Wrap up
Learning to rank (L2R)

Definition
"... the task to automatically construct a ranking model using training data, such that the model can sort new objects according to their degrees of relevance, preference, or importance." - Liu [2009]

L2R models represent a rankable item—e.g., a document—given some context—e.g., a user-issued query—as a numerical vector $\vec{x} \in \mathbb{R}^n$.

The ranking model $f : \vec{x} \rightarrow \mathbb{R}$ is trained to map the vector to a real-valued score such that relevant items are scored higher.

We discuss supervised (offline) L2R models first, but briefly introduce online L2R later.
Liu [2009] categorizes different L2R approaches based on training objectives:

- **Pointwise approach**: relevance label $y_{q,d}$ is a number—derived from binary or graded human judgments or implicit user feedback (e.g., CTR). Typically, a regression or classification model is trained to predict $y_{q,d}$ given $\vec{x}_{q,d}$.

- **Pairwise approach**: pairwise preference between documents for a query ($d_i \succ_q d_j$) as label. Reduces to binary classification to predict more relevant document.

- **Listwise approach**: directly optimize for rank-based metric, such as NDCG—difficult because these metrics are often not differentiable w.r.t. model parameters.
Features

Traditional L2R models employ hand-crafted features that encode IR insights.

They can often be categorized as:

- **Query-independent or static** features (e.g., incoming link count and document length)
- **Query-dependent or dynamic** features (e.g., BM25)
- **Query-level** features (e.g., query length)
Outline

Morning program
- Preliminaries
- Text matching I
- Text matching II

Afternoon program
- Learning to rank
 - Overview & basics
 - Refresher of cross-entropy
 - Pointwise loss
 - Pairwise loss
 - Listwise loss
 - Different levels of supervision
 - Toolkits
- Modeling user behavior
- Generating responses
- Wrap up
A quick refresher - Neural models for different tasks

Learning to rank

- Expected
- Loss
- Predicted

Regression

Classification

features_{item}

model

features_{item}

model

features_{item, class 1}

model

features_{item, class 2}
A quick refresher - What is the Softmax function?

In neural classification models, the softmax function is popularly used to normalize the neural network output scores across all the classes

\[p(z_i) = \frac{e^{\gamma z_i}}{\sum_{z \in Z} e^{\gamma z}} \quad (\gamma \text{ is a constant}) \]
A quick refresher - What is Cross Entropy?

The cross entropy between two probability distributions p and q over a discrete set of events is given by,

$$CE(p, q) = - \sum_i p_i \log(q_i)$$

(3)

If $p_{correct} = 1$ and $p_i = 0$ for all other values of i then,

$$CE(p, q) = - \log(q_{correct})$$

(4)
A quick refresher - What is the Cross Entropy with Softmax loss?

Cross entropy with softmax is a popular loss function for classification

\[\mathcal{L}_{CE} = -\log \left(\frac{e^{\gamma z_{\text{correct}}}}{\sum_{z \in Z} e^{\gamma z}} \right) \] \hspace{1cm} (5)
Outline

Morning program
- Preliminaries
- Text matching I
- Text matching II

Afternoon program
- Learning to rank
 - Overview & basics
 - Refresher of cross-entropy
 - **Pointwise loss**
 - Pairwise loss
 - Listwise loss
 - Different levels of supervision
 - Toolkits
- Modeling user behavior
- Generating responses
- Wrap up
Pointwise objectives

Regression-based or classification-based approaches are popular

Regression loss

Given \(\langle q, d \rangle \) predict the value of \(y_{q,d} \)

E.g., square loss for binary or categorical labels,

\[
L_{\text{Squared}} = \| y_{q,d} - f(\tilde{x}_{q,d}) \|^2
\]

where, \(y_{q,d} \) is the one-hot representation [Fuhr, 1989] or the actual value [Cossock and Zhang, 2006] of the label
Pointwise objectives

Regression-based or classification-based approaches are popular

Classification loss

Given \((q, d) \) predict the class \(y_{q,d} \)

E.g., Cross-Entropy with Softmax over categorical labels \(Y \) [Li et al., 2008],

\[
\mathcal{L}_{\text{CE}}(q, d, y_{q,d}) = - \log(p(y_{q,d}|q, d)) = - \log \left(\frac{e^{\gamma \cdot s_{y_{q,d}}}}{\sum_{y \in Y} e^{\gamma \cdot s_y}} \right)
\]

(7)

where, \(s_{y_{q,d}} \) is the model’s score for label \(y_{q,d} \)
Outline

Morning program
 Preliminaries
 Text matching I
 Text matching II

Afternoon program
 Learning to rank
 Overview & basics
 Refresher of cross-entropy
 Pointwise loss
 Pairwise loss
 Listwise loss
 Different levels of supervision
 Toolkits
 Modeling user behavior
 Generating responses
 Wrap up
Learning to rank

Pairwise objectives

Pairwise loss minimizes the average number of inversions in ranking—i.e., $d_i \succ_q d_j$ but d_j is ranked higher than d_i.

Given $\langle q, d_i, d_j \rangle$, predict the more relevant document.

For $\langle q, d_i \rangle$ and $\langle q, d_j \rangle$,
- Feature vectors: \vec{x}_i and \vec{x}_j.
- Model scores: $s_i = f(\vec{x}_i)$ and $s_j = f(\vec{x}_j)$.

Pairwise loss generally has the following form
[Chen et al., 2009],

$$\mathcal{L}_{\text{pairwise}} = \phi(s_i - s_j)$$

where, ϕ can be,
- Hinge function $\phi(z) = \max(0, 1 - z)$ [Herbrich et al., 2000]
- Exponential function $\phi(z) = e^{-z}$ [Freund et al., 2003]
- Logistic function $\phi(z) = \log(1 + e^{-z})$ [Burges et al., 2005]
- etc.
RankNet

RankNet [Burges et al., 2005] is a pairwise loss function—popular choice for training neural L2R models and also an industry favourite [Burges, 2015]

Predicted probabilities: \(p_{ij} = p(s_i > s_j) \equiv \frac{e^{\gamma s_i}}{e^{\gamma s_i} + e^{\gamma s_j}} = \frac{1}{1 + e^{-\gamma(s_i - s_j)}} \)

and \(p_{ji} \equiv \frac{1}{1 + e^{-\gamma(s_j - s_i)}} \)

Desired probabilities: \(\bar{p}_{ij} = 1 \) and \(\bar{p}_{ji} = 0 \)

Computing cross-entropy between \(\bar{p} \) and \(p \),

\[
\mathcal{L}_{RankNet} = -\bar{p}_{ij} \log(p_{ij}) - \bar{p}_{ji} \log(p_{ji})
\]

\[
= -\log(p_{ij})
\]

\[
= \log(1 + e^{-\gamma(s_i - s_j)})
\]
Cross Entropy (CE) with Softmax over documents

An alternative loss function assumes a single relevant document d^+ and compares it against the full collection D

Probability of retrieving d^+ for q is given by the softmax function,

$$p(d^+|q) = \frac{e^{\gamma \cdot s(q,d^+)}}{\sum_{d \in D} e^{\gamma \cdot s(q,d)}}$$ \hspace{1cm} (12)

The cross entropy loss is then given by,

$$\mathcal{L}_{CE}(q, d^+, D) = -\log \left(p(d^+|q) \right)$$ \hspace{1cm} (13)

$$= -\log \left(\frac{e^{\gamma \cdot s(q,d^+)}}{\sum_{d \in D} e^{\gamma \cdot s(q,d)}} \right)$$ \hspace{1cm} (14)
Notes on Cross Entropy (CE) loss

- If we consider only a pair of relevant and non-relevant documents in the denominator, CE reduces to RankNet

- Computing the denominator is prohibitively expensive—L2R models typically consider few negative candidates [Huang et al., 2013, Mitra et al., 2017, Shen et al., 2014]

- Large body of work in NLP to deal with similar issue that may be relevant to future L2R models
Outline

Morning program
 Preliminaries
 Text matching I
 Text matching II

Afternoon program
 Learning to rank
 Overview & basics
 Refresher of cross-entropy
 Pointwise loss
 Pairwise loss
 Listwise loss
 Different levels of supervision
 Toolkits
 Modeling user behavior
 Generating responses
 Wrap up
Listwise

Blue: relevant Gray: non-relevant

NDCG and ERR higher for left but pairwise errors less for right

Due to strong position-based discounting in IR measures, errors at higher ranks are much more problematic than at lower ranks

But listwise metrics are non-continuous and non-differentiable

[Burges, 2010]
LambdaRank

Key observations:

- To train a model we dont need the costs themselves, only the gradients (of the costs w.r.t model scores)
- It is desired that the gradient be bigger for pairs of documents that produces a bigger impact in NDCG by swapping positions

LambdaRank [Burges et al., 2006]
Multiply actual gradients with the change in NDCG by swapping the rank positions of the two documents

\[\lambda_{\text{LambdaRank}} = \lambda_{\text{RankNet}} \cdot |\Delta NDCG| \] (15)
According to the Luce model [Luce, 2005], given four items \(\{d_1, d_2, d_3, d_4\} \) the probability of observing a particular rank-order, say \([d_2, d_1, d_4, d_3]\), is given by:

\[
p(\pi|s) = \frac{\phi(s_2)}{\phi(s_1) + \phi(s_2) + \phi(s_3) + \phi(s_4)} \cdot \frac{\phi(s_1)}{\phi(s_1) + \phi(s_3) + \phi(s_4)} \cdot \frac{\phi(s_4)}{\phi(s_3) + \phi(s_4)}
\]

(16)

where, \(\pi \) is a particular permutation and \(\phi \) is a transformation (e.g., linear, exponential, or sigmoid) over the score \(s_i \) corresponding to item \(d_i \)
ListNet and ListMLE

ListNet [Cao et al., 2007]
Compute the probability distribution over all possible permutations based on model score and ground-truth labels. The loss is then given by the K-L divergence between these two distributions.

This is computationally very costly, computing permutations of only the top-K items makes it slightly less prohibitive.

ListMLE [Xia et al., 2008]
Compute the probability of the ideal permutation based on the ground truth. However, with categorical labels more than one permutation is possible which makes this difficult.
Outline

Morning program
 Preliminaries
 Text matching I
 Text matching II

Afternoon program
 Learning to rank
 Overview & basics
 Refresher of cross-entropy
 Pointwise loss
 Pairwise loss
 Listwise loss
 Different levels of supervision
 Toolkits
 Modeling user behavior
 Generating responses
 Wrap up
Learning to rank

Training under different levels of supervision

Data requirements for training an off-line L2R system
Query/document pairs that encode an ideal ranking given a particular query.

Ideal ranking? Relevance, preference, importance [Liu, 2009], novelty & diversity [Clarke et al., 2008].

What about personalization? Triples of user, query and document.
Related to evaluation. Pairs also used to compute popular off-line evaluation measures.
Graded or binary. ”documents may be relevant to a different degree” [Järvelin and Kekäläinen, 2000]
Absolute or relative? Zheng et al. [2007]
How to satisfy data-hungry models?

There are different ways to obtain query/document pairs.

Most expensive

1. Human judgments
2. Explicit user feedback
3. Implicit user feedback

Least expensive

4. Pseudo relevance
Human judges determine the relevance of a document for a given query.

How to determine candidate query/document pairs?

- Obtaining human judgments is expensive.
- List of queries: sample of incoming traffic or manually curated.
- Use an existing rankers to obtain rankings and pool the outputs [Sparck Jones and van Rijsbergen, 1976].
- Trade-off between number of queries (shallow) and judgments (deep) [Yilmaz and Robertson, 2009].
Explicit user feedback

When presenting results to the user, ask the user to *explicitly* judge the documents.

Unfortunately, users are only rarely willing to give explicit feedback [Joachims et al., 1997].
Extracting pairs from click-through data (training)

Extract implicit judgments from search engine interactions by users.

- Assumption: user clicks \Rightarrow relevance (or, preference).
- Virtually unlimited data at very low cost, but interpretation is more difficult.
- Presentation bias: users are more likely to click higher-ranked links.
- How to deal with presentation bias? Joachims [2003] suggest to interleave different rankers and record preference.
- Chains of queries (i.e., search sessions) can be identified within logs and more fine-grained user preference can be extracted [Radlinski and Joachims, 2005].
Clicks can also be used to evaluate different rankers.

- Radlinski et al. [2008] discuss how absolute metrics (e.g., abandonment rate) do not reliably reflect retrieval quality. However, relative metrics gathered using interleaving methods, do reflect retrieval quality.

- Carterette and Jones [2008] propose a method to predict relevance score of unjudged documents. Allows for comparisons across time and datasets.
Side-track: Online LTR

As mentioned earlier, we focus mostly on offline LTR. Besides an active learning set-up, where models are re-trained frequently, neural models have not yet conquered the online paradigm.

See the SIGIR’16 tutorial of Grotov and de Rijke [2016] for an overview.
Learning to rank

Pseudo relevance judgments

Pseudo relevance collections (discussed first on Slide 96) can also be used to train LTR systems.

Web search Asadi et al. [2011] construct a pseudo relevance collection from anchor texts in a web corpus. LTR trained using pseudo relevance outperform non-supervised retrieval functions (e.g., BM25) on TREC collections.

Microblog search Berendsen et al. [2013] use hashtags as a topical relevance signal. Queries are constructed by sampling terms from tweets.

Personalized product search Ai et al. [2017] synthesize purchase behavior from Amazon user reviews. Queries and relevance are constructed according to the human-curated Amazon product categories [Van Gysel et al., 2016]. They learn vector space representations for query terms, users and products.
Outline

Morning program
 Preliminaries
 Text matching I
 Text matching II

Afternoon program
 Learning to rank
 Overview & basics
 Refresher of cross-entropy
 Pointwise loss
 Pairwise loss
 Listwise loss
 Different levels of supervision
 Toolkits
 Modeling user behavior
 Generating responses
 Wrap up
Toolkits for off-line learning to rank

RankLib : https://sourceforge.net/p/lemur/wiki/RankLib

shoelace : https://github.com/rjagerman/shoelace [Jagerman et al., 2017]

QuickRank : http://quickrank.isti.cnr.it [Capannini et al., 2016]

RankPy : https://bitbucket.org/tunystom/rankpy

pyltr : https://github.com/jma127/pyltr

jforests : https://github.com/yasserg/jforests [Ganjisaffar et al., 2011]

XGBoost : https://github.com/dmlc/xgboost [Chen and Guestrin, 2016]

SVMRank : https://www.cs.cornell.edu/people/tj/svm_light [Joachims, 2006]

sofia-ml : https://code.google.com/archive/p/sofia-ml [Sculley, 2009]

pysofia : https://pypi.python.org/pypi/pysofia