Outline

Morning program
 Preliminaries
 Semantic matching
 Learning to rank
 Entities

Afternoon program
 Modeling user behavior
 Generating responses
 Recommender systems
 Industry insights
 Q & A
Outline

Morning program
 Preliminaries
 Semantic matching
 Learning to rank
 Entities

Afternoon program
 Modeling user behavior
 Generating responses
 Recommender systems
 Items and Users
 Matrix factorization
 Matrix factorization as a network
 Side information
 Richer models
 Other tasks
 Wrap-up

Industry insights
Q & A
Recommender systems – The task

- Build a model that estimates how a user will like an item.
- A typical recommendation setup has:
 - matrix with users and items
 - plus ratings of users for items reflecting past/known preferences and tries to predict future preferences
- This is not about rating prediction

[Karatzoglou and Hidasi, Deep Learning for Recommender Systems, RecSys '17, 2017]
Approaches to recommender systems

- Collaborative filtering
 - Based on analyzing users’ behavior and preferences such as ratings given to movies or books

- Content-based filtering
 - Based on matching the descriptions of items and users’ profiles
 - Users’ profiles are typically constructed using their previous purchases/ratings, their submitted queries to search engines and so on

- A hybrid approach
Warm, cold

- Cold start problem
 - **User** cold-start problem – generate recommendations for a new user / a user for whom very few preferences are known
 - **Item** cold-start problem – recommendation items that are new / for which very users have shared ratings or preferences

- Cold items/users
- Warm items/users
Outline

Morning program
Preliminaries
Semantic matching
Learning to rank
Entities

Afternoon program
Modeling user behavior
Generating responses
Recommender systems
Items and Users
Matrix factorization
Matrix factorization as a network
Side information
Richer models
Other tasks
Wrap-up

Industry insights
Q & A
Matrix factorization

- The recommender system’s work horse
Matrix factorization

- Discover the latent features underlying the interactions between users and items
- Don’t rely on imputation to fill in missing ratings and make matrix dense
- Instead, model observed ratings directly, avoid overfitting through a regularized model
- Minimize the regularized squared error on the set of known ratings:

\[
\min_{u,v} \sum_{i,j \in R} (r_{i,j} - u^T_i v_j) + \lambda(\|u_i\|^2 + \|v_j\|^2)
\]

Popular methods for minimizing include stochastic gradient descent and alternating least squares
Outline

Morning program
 Preliminaries
 Semantic matching
 Learning to rank
 Entities

Afternoon program
 Modeling user behavior
 Generating responses
 Recommender systems
 Items and Users
 Matrix factorization
 Matrix factorization as a network
 Side information
 Richer models
 Other tasks
 Wrap-up

Industry insights
Q & A
A feed-forward neural network view

$u_i \rightarrow u_i^T v_j \rightarrow \min_{u,v} \sum_{i,j \in R} (r_{i,j} - u_i^T v_j) + \lambda (\|u_i\|^2 + \|v_j\|^2)$

[Raimon and Basilico, Deep Learning for Recommender Systems, 2017]
A deeper view

Recommender systems

Mean squared loss
Matrix factorization vs. feed-forward network

- Two models are very similar
 - Embeddings, MSE loss, gradient-based optimization
- Feed-forward net can learn different embedding combinations than a dot product
- Capturing pairwise interactions through feed-forward net requires a huge amount of data
- This approach is not superior to properly tuned traditional matrix factorization approach
Great escape . . .

- Side information
- Richer models
- Other tasks
Outline

Morning program
Preliminaries
Semantic matching
Learning to rank
Entities

Afternoon program
Modeling user behavior
Generating responses
Recommender systems
Items and Users
Matrix factorization
Matrix factorization as a network
Side information
Richer models
Other tasks
Wrap-up

Industry insights
Q & A
Recommender systems

Side information for recommendation

(1)

(2)

(3)

(4)
Side information for recommendation

- Textual side information
 - Product description, reviews, etc.
 - Extraction: RNNs, one dimensional CNNs, word embeddings, paragraph vectors
 - Applications: news, products, books, publication

- Images
 - Product pictures, video thumbnails
 - Extraction: CNNs
 - Applications: fashion, video

- Music/audio
 - Extraction: CNNs and RNNs
 - Applications: music
Textual side information

- Content2vec [Nedelec et al., 2016]
- Using associated textual information for recommendations [Bansal et al., 2016]
Textual information for improving recommendations

- **Task**: paper recommendation
- **Item representation**
 - Text representation: RNN based
 - Item-specific embeddings created using MF
 - Final representation: item + text embeddings
Images in recommendation

Visual Bayesian Personalized Ranking (BPR) [He and McAuley, 2016]

- Bias terms
- MF model
- Visual part:
 - Pretrained CNN features
 - Dimension reduction through embeddings
- BPR loss
Outline

Morning program
 Preliminaries
 Semantic matching
 Learning to rank
 Entities

Afternoon program
 Modeling user behavior
 Generating responses
 Recommender systems
 Items and Users
 Matrix factorization
 Matrix factorization as a network
 Side information
 Richer models
 Other tasks
 Wrap-up

Industry insights
Q & A
Alternative models

- Restricted Boltzman Machines [Salakhutdinov et al., 2007]
- Auto-encoders [Wu et al., 2016]
- Prod2vec [Grbovic et al., 2015]
- Wide + Deep models [Cheng et al., 2016]
Restricted Boltzman Machines – RBM

- Generative stochastic neural network
- Visible and hidden units connected by weights
- Activation probabilities:
 \[
 p(h_j = 1|v) = \sigma(b_h^j + \sum_{i=1}^{m} w_{i,j}v_i) \\
 p(v_i = 1|h) = \sigma(b_v^i + \sum_{j=1}^{n} w_{i,j}h_j)
 \]
- Training
 - Set visible units based on data, sample hidden units, then sample visible units
 - Modify weights to approach the configuration of visible units to the data
- In recommendation:
 - Visible units: ratings on the movie
 - Vector of length 5 (for each rating value) in each unit
 - Units corresponding to users who not rated the movie are ignored
Auto-encoders

- One hidden layer
- Same number of input and output units
- Try to reconstruct the input on the output
- Hidden layer: compressed representation of the data

Constraining the model: improve generalization
- Sparse auto-encoders: activation of units are limited
- Denoising auto-encoders: corrupt the input
Auto-encoders for recommendation

Reconstruct corrupted user interaction vectors [Wu et al., 2016]

- Collaborative Denoising Auto-Encoder (CDAE)
- The link between nodes are associated with different weights
- The links with red color are user specific
- Other weights are shared across all the users
Prod2vec and Item2vec

- Prod2vec and item2vec: Item-item co-occurrence factorization
- User2vec: User-user co-occurrence factorization
- The two approaches can be combined [Liang et al., 2016]
Recommender systems

Wide + Deep models

- Combination of two models
- Deep neural network
 - On embedded item features
 - In charge of generalization
- Linear model
 - On embedded item feature
 - And cross product of item features
 - In charge of memorization on binarized features
- [Cheng et al., 2016]
Outline

Morning program
- Preliminaries
- Semantic matching
- Learning to rank
- Entities

Afternoon program
- Modeling user behavior
- Generating responses
 - Recommender systems
 - Items and Users
 - Matrix factorization
 - Matrix factorization as a network
 - Side information
 - Richer models
 - Other tasks
 - Wrap-up

- Industry insights
- Q & A
Recommender systems

Other tasks

- Session-based recommendation
- Contextual sequence prediction
- Time-sensitive sequence prediction
- Causality in recommendations
- Recommendation as question answering
- Deep reinforcement learning for recommendations
Session-based recommendation

- Treat recommendations as a sequence classification problem
- Input: a sequence of user actions (purchases/ratings of items)
- Output: next action
- Disjoint sessions (instead of consistent user history)
Recommender systems

GRU4Rec

Network structure [Hidasi et al., 2016]
- Input: one hot encoded item ID
- Output: scores over all items
- Goal: predicting the next item in the session

Adapting GRU to session-based recommendations
- Session-parallel mini-batching: to handle sessions of (very) different length and lots of short sessions
- Sampling on the output: to handle lots of items (inputs, outputs)
GRU4Rec

Session-parallel mini-batches

- Mini-batch is defined over sessions

Output sampling

- Computing scores for all items (100K 1M) in every step is slow
- One positive item (target) + several samples
- Fast solution: scores on mini-batch targets
- Items of the other mini-batches are negative samples for the current mini-batch
Contextual sequence prediction

- **Input**: sequence of contextual user actions, plus current context
- **Output**: probability of next action
- **E.g.** “Given all the actions a user has taken so far, what’s the most likely video they’re going to play right now?” [Beutel et al., 2018]
Time-sensitive sequence prediction

- Recommendations are actions at a moment in time
 - Proper modeling of time and system dynamics is critical
- Experiment on a Netflix internal dataset
 - Context:
 - Discrete time – Day-of-week: Sunday, Monday, … Hour-of-day
 - Continuous time (Timestamp)
 - Predict next play (temporal split data)

[Raimon and Basilico, Deep Learning for Recommender Systems, 2017]
And now, for some speculative tasks in the recommender systems space

Answers not clear, but good potential for follow-up research
Causality in recommendations – [Schnabel et al., 2016]

- Virtually all data for training recommender systems is subject to selection biases
 - In movie recommendation, users typically watch and rate movies they like, rarely movies they do not like
- View recommendation from causal inference perspective – exposing user to item is intervention analogous to exposing patient to treatment in medical study
- Propensity-weighted MF method – propensities act as weights on loss terms

\[
\min_{u,v} \sum_{i,j \in R} \frac{1}{P_{i,j}} (r_{i,j} - u^T_i v_j) + \lambda(\|u_i\|^2 + \|v_j\|^2)
\]

- Performance: MF vs. propensity weighted MF

(As \(\alpha \to 0 \), data is increasingly missing not at random, only revealing top rated items.)

- How to incorporate this in neural networks for recommender systems?
Recommender systems

Recommendations as question answering – [Dodge et al., 2015]

- Conversational recommendation agent
 - (1) question-answering (QA), (2) recommendation, (3) mix of recommendation and QA and (4) general dialog about the topic (chit-chat)

 Task 2: Recommendation
 Can you suggest a film? The Hunt for Red October
 Some movies I like are Heat, Kids, Fight Club, Shaun of the Dead, The Avengers, Skyfall, and Jurassic Park.
 Can you suggest something else I might like? Ocean’s Eleven

 Task 3: QA + Recommendation Dialog
 I loved Billy Madison, My Neighbor Totoro, Blades of Glory, Bio-Dome, Clue, and Happy Gilmore.
 I’m looking for a Music movie. School of Rock
 What else is that about? Music, Musical, Jack Black, school, teacher, Richard Linklater, rock, guitar
 I like rock and roll movies more. Do you know anything else? Little Richard
 Tombstone, Legends of the Fall, Braveheart, The Net, Outbreak, and French Kiss are films I really liked.
 I’m looking for a Fantasy movie. Jumanji
 Who directed that? Joe Johnston
 I like Tim Burton movies more. Do you know anything else? Big Fish

 Memory network jointly trained on all (four) tasks performs best

 Incorporate short and long term memory and can use local context and knowledge bases of facts

 Performance on QA needs a real boost

 Performance degraded rather than improved when training on all four tasks at once
Recommender systems

Deep reinforcement learning for recommendations – [Zhao et al., 2017]

- MDP-based formulations of recommender systems go back to early 2000s
- Use of reinforcement learning has two advantages
 1. can continuously update strategies during interactions
 2. are able to learn strategy that maximizes the long-term cumulative reward from users
- List-wise recommendation framework, which can be applied in scenarios with large and dynamic item spaces
- Uses Actor-Critic network

- Integrate multiple orders – positional order, temporal order
- Needs proper evaluation in live environment
Outline

Morning program
 Preliminaries
 Semantic matching
 Learning to rank
 Entities

Afternoon program
 Modeling user behavior
 Generating responses

Recommender systems
 Items and Users
 Matrix factorization
 Matrix factorization as a network
 Side information
 Richer models
 Other tasks

Wrap-up

Industry insights

Q & A
Wrap-up

- Current directions
 - Item/user embedding
 - Deep collaborative filtering
 - Feature extraction from content
 - Session- and context-based recommendation
 - Fairness, accuracy, confidentiality, and transparency (FACT)

- Deep learning can work well for recommendations

- Matrix factorization and deep learning are very similar in classic recommendation setup

- Lots of areas to explore
Recommender systems

Resources

RankSys : https://github.com/RankSys/RankSys

LibRec : https://www.librec.net

LensKit : http://lenskit.org

LibMF : https://www.csie.ntu.edu.tw/%7Ecjlin/libmf/

proNet-core : https://github.com/cnclabs/proNet-core

rival : http://rival.recommenders.net

TensorRec : https://github.com/jfkirk/tensorrec